Model Selection of Regular Vine Copulas

Lutz F. Gruber
Joint work with Claudia Czado

Technische Universität München

December 15, 2013
Agenda

Dependence Modeling is Important

Copulas & Regular Vine Copulas

Comparison of Model Selection Procedures

Application Study: Pricing of an Exotic Financial Derivative

Conclusions & Outlook
Suppose we hold zero bonds with a Bernoulli payout distribution.

- The zero bonds are due at time $t + 1$.
- With a 90% probability, a bond repays at 100%.
- With a 10% probability, a bond defaults not repaying anything.
- The expected payout of each bond is 90%.
- Our portfolio holds 1,000 such zero bonds.

What is the payout distribution of this portfolio?
The Dependence Structure Determines the Portfolio Payout Distribution

Independence

Perfect Dependence

Everything in between and some more
Agenda

Dependence Modeling is Important

Copulas & Regular Vine Copulas

Comparison of Model Selection Procedures

Application Study: Pricing of an Exotic Financial Derivative

Conclusions & Outlook
Copulas Are Comprehensive Multivariate Dependence Models

- A copula C is an n-variate probability distribution with $U(0, 1)$ margins. Any multivariate distribution F can be expressed in terms of its marginal distributions F_1, \ldots, F_n and a copula C:

$$F(x) = C(F_1(x_1), \ldots, F_n(x_n)), x \in \mathbb{R}^n.$$

- Examples:

- Copulas can describe dependence characteristics such as strength of association, symmetries vs. asymmetries, tail-dependencies, and any other distributional characteristic.
Copulas Separate Dependence Modeling from Marginal Modeling

- Multivariate data can be modeled with
 - Multivariate models
 - Univariate models for the margins and a copula for the dependence structure
- Major strengths of the copula approach are:
 - Well-established models for the margins can be reused
 - Highly flexible because different marginal models can be combined
 - Separation of marginal and dependence models is theoretically justified [Skl59]
- Literature includes: [Skl59, Joe01, Nel06, KC06, KJ10].
Constructing a Multivariate Copula with Regular Vine Pair Copula
Constructions Follows Lego’s Building Block Paradigm

Target Copula

Non-simplified PCC
Building blocks: complex!

Regular Vine Copula
Building blocks: tractable!

Parametric Copulas
Bad fit!
Regular Vine Copulas Are as Easy as 1-2-3! [BC01]

PCC Building Plan

PCC Building Blocks

PCC Copula Density

Regular Vine \mathcal{V}

$\mathcal{V} = (T_1, \ldots, T_{n-1})$

Pair Copulas $B_{\mathcal{V}}(\theta_{\mathcal{V}})$

$B_{\mathcal{V}}(\theta_{\mathcal{V}}) = (B_{T_k}(\theta_{T_k}), T_k \in \mathcal{V})$

$= (c_{i(e);j(e);\cdots;\theta_e}^{B_e}, e \in E_k, T_k \in \mathcal{V})$

$C_{12345} = C_{14} \cdot C_{15} \cdot C_{24} \cdot C_{34}$

$\cdot C_{12:4} \cdot C_{13:4} \cdot C_{45:1}$

$\cdot C_{23:14} \cdot C_{35:14}$

$\cdot C_{25:134}$
There Is a Huge Number of Regular Vine Copulas

<table>
<thead>
<tr>
<th>Dimension n</th>
<th>#Regular Vines 1</th>
<th>#Regular Vine Copulas 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1,029</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>2,823,576</td>
</tr>
<tr>
<td>5</td>
<td>480</td>
<td>1.3559e+11</td>
</tr>
<tr>
<td>6</td>
<td>23,040</td>
<td>1.0938e+17</td>
</tr>
<tr>
<td>7</td>
<td>2,580,480</td>
<td>1.4413e+24</td>
</tr>
<tr>
<td>8</td>
<td>660,602,880</td>
<td>3.0387e+32</td>
</tr>
<tr>
<td>9</td>
<td>3.8051e+11</td>
<td>1.0090e+42</td>
</tr>
<tr>
<td>10</td>
<td>4.8705e+14</td>
<td>5.2118e+52</td>
</tr>
</tbody>
</table>

1 See [MNCK09] for details.

2 This assumes $|B| = 7$ candidate pair copula families.
Agenda

Dependence Modeling is Important

Copulas & Regular Vine Copulas

Comparison of Model Selection Procedures

Application Study: Pricing of an Exotic Financial Derivative

Conclusions & Outlook
Three Approaches to Finding Regular Vine Copulas to Observed Data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Priors</td>
<td>Frequentist level-by-level</td>
<td>Bayesian level-by-level</td>
<td>Bayesian all levels jointly</td>
</tr>
<tr>
<td></td>
<td>$T_k \sim \text{Uniform}(\cdot)$</td>
<td>$\theta_k \mid T_k, B_k \sim \text{Uniform}(\cdot)$</td>
<td>$\mathcal{V} \sim \text{Uniform}(\cdot)$</td>
</tr>
<tr>
<td>$B_k \mid T_k \sim \exp(-\lambda d_k)$</td>
<td>$\theta_v \mid \mathcal{V}, B_v \sim \text{Uniform}(\cdot)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\theta_v \mid \mathcal{V}, B_v \sim \text{Uniform}(\cdot)$</td>
<td>$B_v \mid \mathcal{V} \sim \exp(-\lambda d_v)$</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>Select maximum spanning trees with absolute value Kendall’s τ weights</td>
<td>Reversible Jump MCMC</td>
<td>Reversible Jump MCMC</td>
</tr>
<tr>
<td>Performance</td>
<td>Good</td>
<td>Better</td>
<td>Best</td>
</tr>
</tbody>
</table>
Get the Proposals Right—Or You Risk Rejection! [GC12, GC13]

- Use a mixture of two mutually exclusive, collectively exhaustive algorithms for the between models move:
 1. Algorithm FAM only updates the pair copula families;
 2. Algorithm TREE updates the tree structure and the pair copula families (TREE) and guarantees that the current tree is not proposed.
- Draw proposal trees from a uniform distribution over all trees allowed by the proximity condition (only TREE).
- Compute the maximum likelihood estimates of the parameters of all candidate pair copula families.
- Draw the proposal pair copulas from a discrete distribution with weights proportional to the copulas' maximum likelihoods.
- Draw the proposal parameters from a mixture of truncated normal distributions with varying variances, centered at the MLE.
We Test the Three Procedures with 10x500 Simulated Observations from Four Given Vine Copula Distributions

This slide shows only Model 1

Lutz F. Gruber (TUM)
Joint Model Selection Clearly Beats Sequential Selection! [GC13]

Average log likelihoods of the estimated models as percentages of the true models’ log likelihoods:

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruber II</td>
<td>98.4</td>
<td>98.6</td>
<td>96.5</td>
<td>99.2</td>
<td>98.2</td>
</tr>
<tr>
<td>Gruber I</td>
<td>88.6</td>
<td>80.9</td>
<td>84.9</td>
<td>99.9</td>
<td>88.6</td>
</tr>
<tr>
<td>Dißmann</td>
<td>86.6</td>
<td>75.1</td>
<td>78.9</td>
<td>99.7</td>
<td>85.1</td>
</tr>
</tbody>
</table>

- Model 4 is the multivariate Gaussian copula, which can be obtained through a pair copula construction with any regular vine.
- Because the selection of the regular vine does not matter here, all model selection procedures perform uniformly well.
Joint Model Selection Clearly Beats Sequential Selection! [GC13]
Agenda

Dependence Modeling is Important

Copulas & Regular Vine Copulas

Comparison of Model Selection Procedures

Application Study: Pricing of an Exotic Financial Derivative

Conclusions & Outlook
Have Weekly Historical Prices of 9 DJIA Components (2000–2012)

<table>
<thead>
<tr>
<th>Sector</th>
<th>Company Name</th>
<th>Ticker Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Services</td>
<td>McDonald’s Corp.</td>
<td>MCD</td>
</tr>
<tr>
<td></td>
<td>The Walt Disney Company</td>
<td>DIS</td>
</tr>
<tr>
<td></td>
<td>Wal-Mart Stores Inc.</td>
<td>WMT</td>
</tr>
<tr>
<td>Basic Materials</td>
<td>Alcoa Inc.</td>
<td>AA</td>
</tr>
<tr>
<td></td>
<td>E. I. du Pont de Nemours and Company</td>
<td>DD</td>
</tr>
<tr>
<td></td>
<td>Exxon Mobil Corporation</td>
<td>XOM</td>
</tr>
<tr>
<td>Technology</td>
<td>International Business Machines Corporation</td>
<td>IBM</td>
</tr>
<tr>
<td></td>
<td>Intel Corporation</td>
<td>INTC</td>
</tr>
<tr>
<td></td>
<td>Cisco Systems, Inc.</td>
<td>CSCO</td>
</tr>
</tbody>
</table>
Objective: To Estimate the Expected Payout of a Basket Option

\[P_t := \left(\sum_{i \in I} 1\{u_{i,t} < B\} \right)^3 \]

- Option term: 1 week
- Underlyings: \(I = \{MCD, DIS, WMI, AA, DD, XOM, IBM, INTC, CSCO\} \)
- Normalized returns: \(u_{i,t} \) are the quantiles of the ARMA-GARCH innovations, hence approximately i.i.d. \(U(0, 1) \) [FY01]
- The payout of the option depends exclusively on the dependence characteristics of the underlying assets
Vine Copulas Capture Dependence Characteristics of Financial Data Better than the Student’s t Copula [GC12]
Agenda

Dependence Modeling is Important

Copulas & Regular Vine Copulas

Comparison of Model Selection Procedures

Application Study: Pricing of an Exotic Financial Derivative

Conclusions & Outlook
Conclusions & Outlook on Further Research

- Reversible jump Markov chain Monte Carlo-based procedures allow model selection of regular vine copulas.
- Algorithms that estimate all trees jointly produce better models than stepwise estimation procedures.
- Stepwise level-by-level procedures produce biased estimates that favor models with strong unconditional dependencies and may ignore relevant conditional dependencies.
- **TODO** Investigate the effect of prior choices.
- **TODO** Modify the algorithm to implement different acceptance/rejection mechanisms, e.g., simulated annealing.
- **TODO** Vine Mixture Copulas (VMCs): use mixture of pair copula families to smoothen family selection, cover a wider range of dependence patterns.
References I

References II

A. Sklar, *Fonctions de répartition à n dimensions et leurs marges*, Publications de l'Institut de Statistique de l'Université de Paris **8** (1959), 229–231.
Agenda

Details of the Regular Vine Pair Copula Construction
The Regular Vine Specifies the Construction of the Copula Density

Definition [BC01]: A sequence of trees $\mathcal{V} = (T_1, \ldots, T_{n-1})$ is a regular vine on n elements, if:

1. Tree $T_1 = (N_1, E_1)$ has nodes $N_1 = \{1, \ldots, n\}$ and edges E_1.

2. Trees T_k, $k = 2, \ldots, n-1$, have nodes $N_k = E_{k-1}$ and all edges $e \in E_k$ satisfy the proximity condition: nodes $a = \{a_1, a_2\}$ and $b = \{b_1, b_2\}$ may only be connected by an edge, if one of the a_i equals one of the b_i.

3. An edge e in tree T_k, $k = 1, \ldots, n-1$, represents a pair copula conditional on $k-1$ variables $D(e)$—these are the overlapping elements of one of the a_i and b_i:

$$
c_{1:n}(u_{1:n}; \mathcal{V}, \mathcal{B}_\mathcal{V}(\theta_\mathcal{V})) = \prod_{T_k \in \mathcal{V}} \prod_{e \in E_k} c_{i(e),j(e);D(e)}(u_{i(e)|D(e)}, u_{j(e)|D(e)}; \mathcal{B}_e(\theta_e)), \text{ where}
$$

$$
u_{i(e)|D(e)} := C_{i(e)|D(e)}(u_{i(e)}; (T_1, \ldots, T_{k-1}), (\mathcal{B}_{T_1}(\theta_{T_1}), \ldots, \mathcal{B}_{T_{k-1}}(\theta_{T_{k-1}}))|u_{D(e)}).
$$